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Letters
Stereodivergent total asymmetric synthesis of polyhydroxylated
pyrrolidines via tandem allylic epoxidation and

intramolecular cyclization reactions
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Abstract—Epoxidation of the allylic alcohols 10 and 11 using the VO(acac)2/t-BuOOH system followed by an intramolecular 5-exo
cyclization of the resulting d-epoxycarbamates 12, 13, 18, and 19 has been shown to provide a general and efficient solution for the
asymmetric synthesis of polyhydroxy pyrrolidines. The requisite vicinal amino alcohol functionality was enantio-/regio-selectively
installed by the Os-catalyzed asymmetric aminohydroxylation reaction of the designed achiral olefin 6.
� 2004 Elsevier Ltd. All rights reserved.
Pyrrolidines have been found in a large number of
biologically active natural and artificial compounds.1

Among them, a certain class of polyhydroxylated pyrro-
lidines such as shown in Figure 1 has drawn consider-
able interest in recent years, primarily due to their ability
to inhibit glycosidases.2 Considering the implication of
glycosidases in many serious diseases like diabetes,3

cancers,4 and viral infections including HIV,5 such
compounds and their derivatives may find useful ther-
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apeutic applications for treating these medical condi-
tions. Furthermore, chiral polyhydroxylated pyrro-
lidines have been used as catalysts/ligands in asymmetric
synthesis.6 As a result, a range of strategies for the
asymmetric synthesis of polyhydroxylated pyrrolidines
have been developed, most of which have relied on use
of chirons derived from carbohydrates, tartaric acid,
pyrroles, and a-amino acids.7 Recently, we developed
the first true asymmetric methodology for the synthesis
of polyhydroxylated pyrrolidines, which used the readily
available olefin 6 as a starting material, and utilized the
regioselective asymmetric aminohydroxylation (RAA)
and amidomercuration reactions for installing the vici-
nal amino alcohol functionality and five-membered ring,
respectively.8 Herein, we now report that the RAA
reaction as well as the epoxidation–intramolecular
cyclization cascade of allylic alcohols can provide a
more general and efficient solution for the complete
asymmetric synthesis of polyhydroxylated pyrrolidines.

From a synthetic point of view, it would not be unrea-
sonable to think that 2–5 are the more complex deriv-
atives of 1, and thus can be synthesized by elaborating 1.
Therefore, any general and unified methodology for the
asymmetric synthesis of these compounds should
involve the asymmetric synthesis of 1 and its stereo-
isomers. Figure 2 describes a retrosynthetic analysis for
the asymmetric synthesis of polyhydroxylated pyrrol-
idines including 1. In this strategy, the RAA reaction (V
to IV) and allylic epoxidation–cyclization reactions (III
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Figure 2. A retrosynthetic route to polyhydroxylated pyrrolidines.
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to I through II) are used to establish two key structural
features of polyhydroxylated pyrrolidines, the vicinal
amino alcohol functionality and five-membered ring
containing a nitrogen atom, respectively. Enantio- and
regio-selective transformation of V to IV has been well
established,8 and a variety of reagents and catalysts are
available for the stereoselective epoxidation of allylic
alcohols.9 In the allylic epoxidation reaction, it was
hoped that the initially formed epoxide with right ste-
reochemistry would spontaneously undergo an 5-exo
intramolecular cyclization to give the corresponding
pyrrolidine compound (direct conversion of III to I),
making it easy to separate the other epoxide (if any) and
the pyrrolidine compound.10

Scheme 1 delineates the synthesis of the optically pure
substrates 10 and 11 required for the allylic epoxidation
step. The RAA reaction of the olefin 6 using
(DHQD)2PHAL and N-bromoacetamide afforded the
syn-aminoalcohol 7 with an excellent regio- (>20:1) and
enantio-selectivity (>99%). After protection of the hy-
droxyl group of 7 with p-methoxybenzyl (PMB) chloride
and sodium hydride, the N-acetyl group of the resulting
ester was transformed into tert-butyl carbamate (Boc)
group employing di-tert-butyl carbonate in the presence
of catalytic DMAP followed by a hydrazinolysis to
provide 8.11 The partial reduction of the ester 8 with
DIBAL at )78 �C afforded the aldehyde 9, which upon
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Scheme 1. Reagents and conditions: (a) K2OsO4�2H2O (5mol%),

(DHQD)2PHAL (6mol%), LiOH, N-bromoacetamide, t-BuOH–H2O

2:1, 4 �C, 8 h, 70%; (b) (i) NaH, PMBCl, DMF, 0 �C, 10 h, 78%, (ii)

(Boc)2O, DMAP, THF, reflux, 4 h, then H2NNH2, MeOH, 4 h, 82%;

(c) DIBAL, CH2Cl2, )78 �C, 3 h, 90%; (d) vinylmagnesium bromide,

THF, )50 �C, 1 h, then room temp. 1 h, 88%.
reaction with vinylmagnesium bromide at )50 �C gen-
erated the requisite allylic alcohols 10 and 11 in a 7:3
diastereoselectivity.

With the stage now set for the allylic epoxidation, 10
was treated with various epoxidation reagents including
peracetic acid, MCPBA, VO(acac)2/ROOH, and
Sharpless asymmetric epoxidation reagents, among
which the VO(acac)2/t-BuOOH(TBHP) system gave the
best results. After some experiments with VO(acac)2/
t-BuOOH/solvents, it was found that the reaction con-
ditions using two-fold excess of TBHP in the presence of
4mol% of VO(acac)2 in toluene solvent at ambient
temperature were optimal for the epoxidation of 10.12

Thus, under these conditions, 10 was smoothly trans-
formed to a mixture of the epoxide 12 and the pyrroli-
dine 15 in 40% and 44% isolated yield, respectively
(Scheme 2). The compound 15 is formed by the ring
opening and concomitant intramolecular cyclization
reactions of the initially formed epoxide 13 under the
reaction conditions. After separation, cyclization of the
surviving epoxide 12 in the presence of TFA (1.0 equiv)
at 4 �C afforded the other diastereomeric pyrrolidine 14.
Deprotection of the PMP group of 14 and 15 by CAN13

followed by exhaustive acidic hydrolysis of the resulting
triols furnished the polyhydroxylated pyrrolidine 16 and
17 as their HCl salt, respectively.14

Epoxidation of the allylic alcohol 11 under the similar
conditions was substantially slower compared to that of
10, and thus most of the starting material remained even
after 3 days. However, upon increasing temperature to
NH

PMBO OH

Boc

PMPO O

12 (isolated)

NH

PMBO OH

Boc

PMPO O

13

N

PMBO OH

Boc

PMPO OH

14

N

PMBO OH

Boc

PMPO OH

15 (isolated)

b

H
N

HO OH
HO OH

H
N

HO OH
HO OH

c c

16 17

. HCl . HCl
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60 �C, the reaction completed in 32 h giving a mixture of
the epoxide 18 and cyclized product 22 in 38% and 42%
isolated yield, respectively (Scheme 3). Cyclization of the
epoxide 18 needed more demanding conditions, where
2.5 equiv of TFA and ambient temperature were re-
quired. As a result, deprotection of the N-Boc group
occurred to give the cyclic amine 20. Even though ion-
exchange column chromatography could be used for
purification, the amine 20 was more conveniently puri-
fied by silica gel column chromatography after conver-
sion to the corresponding tri-acetate 21. Finally, upon
successive CAN deprotection and acidic hydrolysis, 21
and 22 generated the polyhydroxylated pyrrolidines 23
and 24 as HCl salt, respectively.15

In summary, it has been shown that the RAA reaction
of olefins and the epoxidation–intramolecular cycliza-
tion cascade of allylic alcohols can provide an extremely
convenient tool for the asymmetric synthesis of poly-
hydroxylated pyrrolidines. Coupled with the previous
work from this laboratory where the RAA reaction of
olefins and oxazoline chemistry have been used to con-
trol stereochemistry of the vicinal amino alcohol func-
tionality (stereochemistry at C-1 and C-2; see Fig. 1 for
carbon numbering),8c the methodology reported here
should make it possible to stereoselectively synthesize
DMDP (1) and its all other stereoisomers from the
readily available achiral olefin 6. As an extension and
application of the present methodology, the asymmetric
synthesis of 2, 3, 4, and 5 in Figure 1 are currently being
pursued, and will be reported in due course.
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